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ABSTRACT
G The general topic of the research reported in this thesis is the

study of nonuniform block sampling theory and its application to the
study of correlation functions of sampled signals. The research
evolved from the specific problem of trying to reduce the odd harmonic
terms vhich appear in the correlation function of hard limited and
uniformly sampled sinusoidal signals. These o0dd harmonic terms arise
because of the synchronism betwcen the periodicity of the uniform
sanples and the periodicity of the odd signal harmonics produced by
hard limiting.

The general approach to the prodblem is to use nomnifors saapling
to reduce the undesirable periodicity effects and thus to reduce the
odd harmonic terms in the correlation function. A particularly useful
class of nonuniform sampling functions for this application is showm to
be "blocg sampling functions;" i.e., short sequences (or dlocks) of
nomuniforn saaples vhich are repeated periodically in tize.

As a preliminary to a study of block sampling functions and
their application to the odd harmonic problen, a detailed study o: the
general properties of correlation functions for large TV signals with
uniforn sampling is made. These results are then extended W0 the case
of simsoidal signals vith uniforms saspling to {llustrate the role of
both clipping and sampling in the gencration of the wundesiradle odd

C harmonic terms in the correlation functicn. The wnifors samplisg
correlation functioa results along vith the results of the blechk
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sampling spectrum enalysis then form the basis for analysis of
correlation functions of sinusoidal signals with nonuniform block
sampling.

In the study of correlation functions of large IW signals, two
alternative definitions of sampled corrclation functions are compared:
the regular correlation function, and a quadrature correlation function
cansisting of an average of a regular correlation function and the
correlation function of the Hilbert transforms of the correlated
signals. By eliminating the second harmonic sampling effects, the
Quadrature corrclation function is shown t0 achieve more accurate
correlation for deteministic signals and lower correlation variance
for random signals. A coxparison of the saspled quadrature co.:clation
function varjance for clipped and unclipped narrovband randonm processes
shovws that the variance ‘or the clipped signals could be reduced dy as
much as 3 dB over the unclipped signal variance by saxmpling at &
sufficiently high rate.

In extending the study of quadrature correlation function
properties 10 sinusoidal signals, uniform saxpling is shown 0 make
the correlation function periodic (as & function of frequency) vith e
repetition period equal to the sampling rate, while clipping iatroduces
extranscus correlations for imgut signal frequencics wvhich are odd
mitiples of the reference signal frequency. Vhen both clipping and
waifore sanpling are enployed, each 0dé harmoaic correlatioa fumctisa
response is repeated at period frequeacy intervals which are related
0 he sampling rate, Lthus giving rise 10 the edd harwonic predlen for
eorrelation fun-tisns of simuesidal signals.
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y After proposing nonuniform block sampling as a possible solution !

to the odd harmonic problem, the frequency spectrum properties of

r ideal block sampling are studies in detail. These properties include
amplitude and phase characteristics of each spectral component,
spectral periodicity conditions, conservation of spectral energy
properties, and conditions for minimum variance of the sampling power
spectrun. As an example of sampling spectrum armplitude shapinz by
choice of sample timecs, a block sanpling function example is presented
vhich uses a pseudo-randon number gencrator for sampling time selection.
This sampling technique achieves a unique spectrum shaping by
suppressing the spectral amplitude for small values of frequency, a
property that is shown to be important in the reduction of odd
harmonic responses in correlation functions of clipped simusoidal
sigmls. {

Considering the quadrature correlation function of two clipped

simusoidal signals u.th bdlock sampling as a function of the two
sirusoidal frequencies, it is shown that, although the odd harmoni-
effects are greatly reduced, certain “Vorst Case” combinations of the
tw sinusoidal frequencies rcsult in correlation functions whose o
sverags value is greate: tan those for all other frequency coxdina-
tions. In addition to deriving the criticel frequincy relationships, 1
aa amalytic expression is oblained relating the correlation function
for these Vorst Case frequencies to the coefficisats of the block samgpling

. froQueacy spectnn. BSccw experinental results, based oa o digital comguter
simlation, are shoum (9 verify the analytical asde). It s comcluded

UNCLASSHIED ‘
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that by proper choice of sampling parameters, block sampling can reduce
the undesirable odd harmonic correlation function responsecs due tc

clipping and sampling by any desired degree.
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CHAPTER I

INTRODUCTION

1.1 General Statement of the Problem

The general topic or the research reported in this thesis is the
application of nomuniform sampling theory to the study of correlation
functions of sampled sigrals that are limited to a band of frequencies.
In addition to nonuniform sampling, the research considers effects of
uniform sampling and hard limiting on the correlation functions of
signals with large TW products as well as sinusoids. The research
evolved from the specific problem of trying to find a method to reduce
the odd harmonic terms which appear in the correlation function of a
sinusoidal signal which has been hard limited and uniformly sampled.
These odd harmonic terms arise because of the synchronism between the
periodicity of the unifom samples and the periodicity of the odd
signal harmonics produced by hard limiting. This research considers
the use of a special class of nonuniform sarpling--'block sampling;"
i.e., nonuniform samples with a periodically recurrent pattern--to
eliminate this synchronism and reduce the odd harmonic correlation

function terms.

- §5 Importance of the Study

The correlation function is an important analysis tool in a

large number of applications 5, 26, 31, 32]. It is particularly
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useful, for example, in the study of the response of linear systems to
random inputs [33] where deterministic analysis methods do not apply
and in determining the statistics of signels in the presence of noise
[13]. Since the correlation function and the power spectrum are
Fourier transforms of each other, it is also important in spectral
analysis [13]. Other applications include Hilbert transform theory
[14] and the correlation function method [1l4] for finding roise
statistics at the output of certain noalinear devices.

The operations of sampling and a hard limiting (clipping) have
become common in many physical systems [29, 26, 1i, 35]. These
operations are often necessary because of physical limitations which
make available only sampled information or signal polarity information.
Sampling has become an important item in modern communication systems
since the advent and wide spread use of digital techniques. Examples
of the use of sampling include pulse code modulation (PCM) systems and
pulsed radar. In most sampling applications in the literature, the
concern is reconstruction of the original signal from its samples [1h].
The basis for representing continuous signals by sampled values taken
at discrete time instants lies in the well-known sampling theorems [4].
For signals limited to a frequency band, the sampling theorems are
usually presented in terms of quadrature sampling [20]; i.e., taking
samples of both the signal and its Hilbert transform at a rate
determined by the signal bandwidth. In this thesis, we are not
concerned with the reconstruction of the original signal from its

sampled values, but in the effects of sampling on the auto-correlation



function of a signal or on its cross-correlation function with other
signals.

A companion process to sampling in many digital applications is
that of signal quantizing. Many communication systems require that
signal samples be converted to digital numbers at some point within
the system so they can be manipulated by digital computers or other
digital devices. An important special case of quantizing is hard
limiting [37, 23], or clipping, in which only two levels of
quantization; i.e., signal polarities are employed. In this research,
we will consider the implications of hard limiting on the correlation
function of sampled signals that are limited to a band of frequencies
[30, 38].

Although most of the sampling theory work in the literature is
concerned with uniform sampling, many important applications [36, 28]
either intentionally [1] or unintentionally [2, 9] make ure of
nonuniform sampling. For this reason, a good deal of research [il,
2k, 5, 21, 40] has been done on the problem of signal reconstruction
from nonuniformly spaced samples of a signal. The effect of nonunifcrm
sampling on correlation function properties of sinusoidal signals is

to be a major consideration in this thesis.

1.5 Previous Related Studies

The special class of nonuniform sampling functions--those with
a periodically recurrent pattern--applie? in this thesis to the problem
of reduction of odd harmonics in correlation functions of clipped

sinusoidal signals has been considered previously by several authors
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[41, 24, 36, 7]. Yen [41], using the term "Recurrent Nonuniform
Sampling," and Kohlenberg [24], using the term "pth Order Sampling, "
both consider the problem of reconstruction (interpolation) of a
continuous signal from its nonuniformly sampled values. Tou [36],
using modified z-transform theory, analyzes the response of sampled-
data systems using “Cyclic Variable-Rate Sampling,” while Beutler and
Leneman [7] consider "Periodically Recurrent' nonuniform sampling
functions as a special class of processes in the general theory of
stationary point processes.

More specifically, Yen [4] derived a reconstruction formula
for low pass signals (bandlimited to W Hz) which were sampled by a
recurrent nonuniform sampling function with N samples in each
periodic sample 'block . Kohlenberg [2hk] derives a more general method
for obtaining reconstruction formulas for the same sampling function,
requiring oniy that the sampled signal possess a Fourier Transform.
While Kohlenberg's method applies in principle to signals for an
arbitrary number N of samples per recurrent sample block, he applies
it only for N = 2 obtaining a second-order sampling reconstruction
formula. It is apparent that his method becomes very cumbersome for
N > 2. Kohlenberg expresses recurrent nonuniform sampling with N
samples per block as the sum of N uniform sampling functions with
different time origins where the uniform sampling period of each function
is equal to _he block interval length in seconds. This representation
proved useful in the study of Block Sampling” in this thesis research.

Tou [36] models nonuriform block sampling in a slightly

different way, shifting the continucus signal (in parallel) with N



different time advances (corresponding to the time of each sample
instant in the block), sampling @11 N signals at the same instant,
delaying each sampled signal by an amount equal to the time advance
before sampling, and finally summing the N sampled signals to form
the resultant sampled signal. A modified version of Tou's model was
found useful in Chapter V for computing the correlation function of a
clipped sinusoidal signal with nonuniform block sampling.

Block sampling is shown by Beutler and Leneman [7] to be a
special example of a S.P.P (stationary point process) if the initial
sampling instant is allowed to be i random variable. Studying the
problem of analyzing stochastic sampling of wide-sense stationary
random processes, Beutler, Leneman, and Lewis [6, 7, 27, 23] formulate
a basic theory for S.P.P. deriving statistics on the number of points
in intervals and on forward and backward recurrence times, and apply
the theory to a number of problems including spectral analysis of
randomly modulated processes and mean square error in t.e
reconstruction of signals from randomly timed samples. In this thesis,
block sampling will be treated as a deterministic process, making use
of Fourier transform theory to derive and study its complex spectrum

properties.

1.4 Scope and Limitations of the Study

The basic topic of this research--the study of nonuniform block
sampling and its application in reducing the odd harmonic terms in
correlation functions of clipped sinusoidal signals--is covered in

Chapters IV and V. In Chapter IV, nonuniform "block sampling"” is
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defined and its spectral properties are derived. These results are
then applied in Chapter V to the odd harmonic problem in correlation
functions. Experimental results from a digital computer simulation
are include. to verify some of the theoretical results.

As a preliminary to the nonuniform sampling work of Chapters IV
and V, a study of the general properties of correlation functions for
large TW signals including the efrects of uniform sampling and
clipping is made in Chapter II. These results are then extended in
Chapter III to quadrature correlation functions of sinusoidal
signals illustrating the role of both clipping and uniform sampling

in the generation of the odd harmonic correlation function terms.



CHAPTER II

CORRELATION FUNCTION PROPERTIES OF SIGNALS WITH LARGE TW

THAT ARE TLIMITED TO A BAND OF FREQUENCIES

2.1 Definition of Regular and Quadrature Correlation Functions

In this chapter, a study of the general properties of
correlation functions of signals with large time-tandwidth (TW)
products will be made. After comparing two alternative definitions
for correlation functions of uniformly sampled signals, the effects
of clipping will be considered.

The two alternative correlation function definitions to be
compared are the regular, or standard, sampled correlation function
[20] and the quadrature correlation function which makes use of
Hilbert transform pairs of signal samples.

The regular correlation functions O(M'I‘s) and ".\(M'r') are

defined by
M
S-‘ x(n’I‘s) y(m’r‘) (2.1)

m=1

o(MT.)

i
==

M

L5 x(r) far,), (2.2)

m=1

A
o(lu‘.)

where 'I‘8 is a uniform sampling period, M is the number of samples



in a signal duration T, x(t) and y(t) are real-valued signals which
can be either deterministic or random, and Q(t) is the Hilbert
transform of y(t). The usual correlation function dependence on

time shift T can be found by setting x(t) in Equations (2.1) and
(2.2) equal the time shifted version of itself; i.e., by setting

x(t) = x(t - ). The envelope of the regular correlation function

can be written as

Eomy) =/sP0m) +¥0m,) . (2.3)

An analytical model for the regular correlation function is
shown in Figure 2.1 using complex signal representation [15]. In this
model, the sampled pre-envelope py(uT.) of the reference signal

y(t), defined by

p (M) = y(aT) + ) $(al,) ,

is correlated with the sampled input signal x(st) giving the

following complex correlation function:

M
:0,) < § ) x(aT,) p(at,)
m=1
M M
= § ) xT) y@r)+ 3§ ) x(er)) §ar,)
m=1 m=1

= e(ur) + 5 S(mm,).



MOV . % MOICATES Tveg OPERATION OF TAKING THE HILBERT TRANSFORM.

U !Uiﬂ

SAMPLIR
) __siay)
|
l
| r =2,
= !jm _ : I
pn ° .'("o,ulo"u) P ','(.l.'
)

{=t)

PMgure 2.1 Amalytic Model of Regular Correlation Punction




-

& o b L

10

Thus, the complex correlation function z(MTS) contains both
A
quadrature components, ©(MI_ ) and ©(MT_), and the envelope,

Cur); i.e.,

Re[z(MTS)] = o(MTS) = ‘“in-phase” component of the regular
correlation function,
A )
Im[z(MTs)] = o(MTs) = ‘quadrature phase” componernt,
and
|z(M’I‘s) = ‘é,(Mrs) = regular correlation function envelope.

We will next consider a modified version of the regular
correlation function model of Figure 2.1. The "Quadrature Correlation
Function" model of Figure 2.2 differs from the “Regular Correlation
Function' model of Figure 2.1 in that, for the quadrature version,
Hilbert transforms are taken of both the input and reference signals
rather than just the reference signal. Instead of sampling the signal
x(t) every ’I‘s seconds as shown irn Figure 2.1, the quadrature
correlation requires pairs of samples, x(Zst) and Q(Zst), every
ZTS seconds, giving the same total number M cf samples during the
finite signa. duration, where M is assumed to be an even integer.
The resulting equations for the in-phase component QQ(MTS), the
quadra‘ure-phase component QQ(MTS), and the envelope EQ(M‘I‘S) of

the quadrature correlation function are




NOTE : H INDICATES THE OPERATION OF TAKING THE HILBERT TRANSFORM,

x (1)

y(t)

H|

JH

+
+

SAMPLER
pN) = xin-jxi) | pr(2mTy)

A
ixing”

iy
+

pl."y

|
| X
|

ape
pylth=yh+jyih b py(2mTy)

+

{m |2T.}

Figure 2.2 Analytic Model of Quadrature Correlation Function
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M/2

0qMm) = § ) [x(zaT,) y(zuT,) + X(2nT,) H(2n1,)],
s (2.h)

L}

=l

M/2
Bo0m) = & % (x(2m? ) F(2uT,) - X(2mT,) y(2mT )],

iy (2.5)

Eq(MT’) =\/oqz () +’.‘Q2 (MT ). (2.6)

A comparison of Equations (2.4) and (2.1) show that both types of
correlation function definitions require the same number of
numerical computations (products and sums) per second to compute one
value of the correlation function. However, successive values of the
quadrature correlation function can only be computed at 2'1" second
intervals instead of at 'I“ second intervals if the time delay 1
is performed after sampling.

In the analytic quadrature correlation function model shown in
Figure 2.2, the pre-envelope of the reference signal y(t) is
correlated with the complex conjugate of the pre-envelope of the input
signal x(t) giving the following equation for the complex quadrature
correlation function, zQ(M‘I‘.):

M/2

M) = ) B (2a1,) p(2a1,)
m=1
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M/2
XL [x(2aT,) - 3X(2mT )][y(2nT ) + 3§(2mT,)]

S
- N[
m=1
M/2
- &) [x(za1,) y(zar,) + X(2uT,) §(2m1,)]
r=1
m/2
+3% ) [x(ear,) P(zaT,) - x(2uT,) y(zm1,)]
m=1

= o (M) + J’o‘q (Mz,).

Taking the real and imaginary parts and the absolute value of zQ(MT ')

gives:

Re [:Q(Lﬂ")] = OQ(MT‘), the in-phase component,

"

A
Im [:Q(M'r.)] OQ(M'I'.), the quadrature-phase component,

,zQ(m")I EQ(H'I"), the correlation envelope.

2.2 Comparison of Regular and Quadrature Sampled Correlation

Functions

A. Elimination of the Second Harmonic by Quadrature Correlation.

Consider the equations for the two basic correlation techniques being
compared, regular correlation and quad-ature correlation. From
Equation (2.1), the regular correlation function "in-phase” component

is:



1k

M

o(MI) = x(nTg) y(mT) (2.7)

==

m=1

and, from Equation (2.4), the gquadrature correlation function

"in-phase’ component is:
M/2 3
\ A

(x(2mT ) y(2mT ) + x(2nT ) y(2mT )].

e (2.8)

4 1

eq(m‘s) =

Equations (2.7) and (2.8) are both sampled approximations to the

desired analog correlation function given by
F s

o(1) = % L x®) a(e) e, (2.9)
where x(t) and y(t) are continuous resl-valued functions that are
approximately limited in time T and bandwidth W such that

TW >> 1. The basic question that we now wish to examine is how
accurately the sampled correlation functions of Equations (2.7) and
(2. 8) approximate the desired continuous correlation function of
Equation(2.9) for two specific cases. The two cases considered here
are: (1) x(t) and y(t) are both deterministic functions for
which Fourier transforms can be written [as a special case, y(t)
could be a delayed version of x(t)], and (2) both x(t) and

y(t) (either deterministic or random) can be represented by

narrow-band representations of the form [37]



s(t) = a(t) cos @t - b(t) sin w t,

where a(t) and b(t) are low-pass functions and w, 1is the center
frequency of the signal s(t). Case 1 thus considers the sampling
errors in obtaining the correlation function between two deterministic
signals, and Case 2 considers the effects of sampling on the
correlation function variance when a reference signal is correlated
with a narrow band random process. In both cases, it will be found
that the sampled quadrature correlation function represents a more
accurate approximation to Equation (2.9) if the sampling rate is
sufficiently high and that the sampling errors associated with the
regular correlation function are a function of a signal trandwidth,
center frequency, and sampling rate.

The basic phenomenon that makes quadrature correlation more
accurate than regular correlation in both cases is that quadrature
correlation eliminates the second harmonic in the frequency spectrum
of the unsampled product of x(t) and y(t). This will be shown by
obtaining expressions for the Fourier transforms of the products
[x(t) » y(t)] for regular correlation and % [x(t) y(t) + Q(t) ?(t)]
for quadrature correlatior.

Considering Case 1, let X(w) and Y(w) represent the Fourier
transforms of x(t) and y(t), and let Q(w) and Q(m) represent
the Fourier transforms of Q(t) and ?(t). Assume x(t) and y(t)

are deterministic signals whose non-negligible positive spectrums, as
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illustrated in Figure 2.3, are confined to the frequency interval
(c.)o - %) <w< (wo - %), where @ is the center of the frequency
band, A = 2nW, and W is the signal bandwidth in Hertz. According

& A A
to [15], X(w) and Y(w) can be expressed in terms of X(w) and

Y(w) as
A -jX(w) for w >0
X(w) = (2.10)
X(w) forw<o0 ,
and
A -j¥(w) for w >0
Y(w) = (2.11)

jY(w) forw<oO.

The Fourier transform FR(w) of the regular correlat.ion

product x(t) y(t) is:
Fa(@) =Flx(t) y(0)1 = | x(e) y(t) e ae. (2.12)

-0

Substituting the expressions for the inverse *ransforms of x(t)
and y(t) into Equation (2.12) gives PR(w) as the convolution of

X(w) and Y(w):

i !
2z

FR(w) = J X(B) Y(w-B) dB. (2.13)

-C0

Likewise, for the product x(t) - ¥(t), il

x<

R =FRO) P = | Re) §e) e a,

-0

then
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|X(u)|
1 ~ar-
+ m + + + w
~2w, ) 0 wy 2w,
Y(w)
—— m + m +—w
-2w, ~w, o wy 2wy

Figure 2.3 Typical Non-Zero Signal Spectrum Ranges

o
28
iih /}\ N

—4

2w, ~we -A04 -:. 2w,

- W

Figure 2.4 Non-Zero Spectral Range for Regular Correlation

Al\&(u)'
2 - ik = = T

Figure 2.5 Non-Zero Spectral Range for Quadrature Correlation
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A
=1 | Re) ) a. (2.14)

-0

O

The spectrum of the quadrature correlation product

%[x(t) y(t) + %) $(t)] in terms of Fo(w) and Fy(w) is:

@ = T4 x®) y(e) + 20) fen}

i

3 [Fp@) + Fy(w)]. (2.15)

An examination of the frequencies at which FR(w) and
FQ(m) are non-negligible will show that, for rq(w), the second
parmonic terms around « = 2w cancel when the sum of !’R(w) and
Fz(w) is taken in Equation (2.15). Consider first the non-negligible
regions of the regular correlation spectrum FR(w). The graphical
convolution shown in Figure 2.4 of X(w) and Y(w) from Figure 2.3

shows that the non-negligible portions of !'R(w) ere given by

[

-A < w< A, (modulation term)
FR(w) § 0 for (Zu:o -A)<w< (&uo + 4), (positive secornd
< harmonic)

(-amo -A)<w< (-2w° +4), (negative second

\ harmonic).
(2.16)
3 The corresponding expressions for FR(:») obtained from Equation (2.13)

are:
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-+ a/2
o 1
e = 3 G i
Lo+ a/2

2 X(8) Y(w-B) a8,
3 jwo_A/Z (8) ¥(w-8)

for -A<w<A,

o +4/2

= = J X(8) ¥(w-g) a8,
@, - a/2

for (Zw° -A)<w< (&uo +4),

-+ Af2

o
. j X(8) ¥(w-8),
-« - a/2

for (-amo -A)<w< (-awo +4).

(2.17)
A A
An examination of Fz(w) = G[x(t) y(t)] from Equation (2.14)
shows the same non-negligible spectral regions given by
Equation (2.16), where Fz(m) can be derived using the Hilbert

transform spectral properties of Equations (2.10) and (2.11) as:

-« + aA/2
@) = 3 [3X(B)] [-5¥(s=B)) a6
-(Do - A,’Z
@, + a/2
+2 [-3%(B)] [5¥(8)],
- jwo -8/2 ‘ :

for -A<w<A4,
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w + A/Z
1 o]
- 1 j [-3%(B)] [-3Y(w-B)] ag,
@, - bf2
for (2w, - 8) <w< (2w +2),
- + A/2
1 " :
-1 / (3x(B)] [3¥(w-B)] a8,

" e - 0/2
for (-2{.00 -=A)<o< (-?Luo +4).

(2.18)
Combining FR(w) and Fz(w) from Equations (2.17) and

(2.18) to give FQ(w) = -;— [FR(w) + Fz(w)] for quadrature correlation

yields:
- + a/2
1
Folw) = Folo) = 3 X(8) Y(w-g) a8
Q\ R an S A/2
()
w_ + Af2
TR
‘% J X(g) Y(w-B) d8,
Yo - 8/2
()
for -A <w<A,
= 0, for (Zwo-A)<w<(2wo+A),
= 0, for (-2w° -A)<w< (-2(»0 +4).

(2.19)

Thus, from Equations (2.17) and (2.19), FQ(w) and FR(w)
are identical for -A < w < A and FQ(w) is zero elsewhere, while

FR(w) contains second harmonic terms around w = + 2w° as
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11lustreted in Figures 2.L and 2.5. It will now be shown that »1ese
second hareonic terms in the regular correlation product spectrum
produce sampling errors which are nct present in the guad.ature

correlation function.

B. Correlation kcuml for Deterministic Siws. In order

to evaluate the correlation function sampling errors when both the
input and references are deterministic signals (or time.delayed
versions of the same deterministic signal), consider first the problem
of representing the integral of an arbitrary Fourier transformable
function f(t) by the sus of uniformly spaced samples t(st) of
the function.

let f(t Dbe any Fourier traniformable deterministic real-
valued signal defined for O < t < T and essentially zero elsewhere.
We can represent f(t) in the time interval -, T Dby the complex

Fourier series:

= A2ixnt
tiv) - % ) cn.q"_ (2 20)
nEed
vhere T . 2+n . '
e = f(U)e T . (2.21)

(o]

& Lo

Next, consider sarpling f(t) at a uniform sampling rate fs
wvhere T. = time betveen sumples in seconds, and averaging the H

resulting N - ; samples; {.e.,
s




N N

1
§ > f(al) = 7 >_
m=1 m=1

Since the Fourier series for f(t)

periodic with period T and since e

the integral of Equation (2.21) for the coefficient c,

rewritten as:

c, = J £(t) e
-T/2

and Equation (2.22) as

N ig‘ T/2
1 \ 3 1 /
i g f(mT ) = W J
m=1 n=-w L -T/2
N Jgﬂ m
Substituting T e L = (1
m=1 (e-J—

N {g T/2
1) = R
T £(mT_ ) T

m=1 k=-w -T/2

A%
Y e e
/. n
n=-w

in Equation (2.20) is

O for n # kN

22

(2.22)

(2.23)

Moving the k = 0 term from the right-hand side of Equation (2.23)

to the left-hand side and noting %
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N‘ T
1 .
E, = ¥ j;. f(mls) - % L/ £(t) dat
- o
m=1
L © T/2 -janke b
SR IIRCE at, (2.24)
e -T/Z
k#0
T
where Ej is the error in representing the integral '% M/ f£(t) dt
N o
by the discrete sum '% 3;1 f(st). If the inverse Fourier
m=1
m,
jenft .. .
Transform f(t) = F(2nf) e df is substituted into the
-00
right-hand side of Equation (2.24), E; becomes:
[ T/Z © .
. » . -jenkf t
E = & y j j F(2nf) e92™T gf e 5 at
L & T/2
k== - ~=
k#0
. @ . T/2 jent(f-kf_)
-y RS -] 8 at| ar
L TLY 1
k:- =00
k#0

sinﬂT(f—kfs)

= y ] F(2nf) m df. (2.25)

K=- -

k#0

Equation (2.25) can be simplified further by writing F(2nf) in

terms of its real and imaginary parts F(2nf) = rF(Zﬂf) + jiF(Zﬂf)

eyl
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‘ to give
x sinsT(f-kf )
= El et it o ani
J.‘ r b 4 - s
g k
¢ T sineT(f-kf,)
¢ J i!‘(Zvrf) Y d6 AT R af.
Yox k s

The second integral is zero because the integrand is an odd function
of frequency. The first i{ntegral can be reduced o the integral over
positive frequeney since the {ntegrand is an even functioa of

frequency. Thus, l".r becomes

= - -m-'r(r-u.)

E.r = 2 . r'(z«f) W“ (2.26)
K 2
k/0

For a given r!‘(Zut). T, and f_, Equation (2.26) eould be used to
compute the error Lr
Further simplification of Equation (2.26) results in many

cases for signals with large TW products. If %« W and l,'(Zi'f)

is approximately constant for (f. - %) < f< (f. . %). Equation (2.26)

approximately reduces to

. N T sinaT(f-kf))
ET =2 ) F(2nkf ) Vi ATRE af.
r 8 J 4 -
- o] | §
k#0

It f's >>-% » the above integral is approximately equal to %
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be ogqual "o the produce Bty for regular ¢ rrelatl n ang *
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et
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r
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7. -) ehich can be camp.ted from Lguation ‘2 17)  Figure 2.+ shows
the pange of non-nagligidle values of I. - for ‘e cese «Rere
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A ® P
r.(.) - %l‘! y’!\o;’! y't"t)!u

- 1 4

rQ“)'Jl' *

ala
-

can te computed from Equation (2.19).
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For t2e quadreture correletize fumetie, lqa!tge. 2.27 ard
Figire 2.% show that the correletice error I - % "q'hll.‘
k=1

A
is essentially serc for the guadreture palr sampling rete f. such
vra°

A .
L >y, (2.28)
g -

- s \ A
teca.se r!,‘ 123 4 for all ¢ 8t e sampling rete f.

represents ‘re Jnifore rete at shich guadreture palr samples are
A 1 1
taser.. Thus, r. . gv" = f.. we e t. 1s Whe regular
correlatice Junifore sampling rete.
For '2e regular correlation function, Lquation (2.17) and

Fig.re I.- stroe "Pa’ sec.nd Parmonic spectral compoments of

r'l exist in 're rerge

(X
[

i any miltiple f tre sampling reve f. falls in this frequency
rarge, & rorereglloitle sampling error [ given by Lguation '2.27)
el.l result. WMetrer r nt s me multiple ’Q'f. falls tn the
interval 2 . LY . 2. ¢ L] depends upon the rela’ .oaship

-

Sranncn rete),

-t

be' veer e L ard f.. For exasple, (f f. .

-

the error will be negligidle (f

(7- . g N any integer ',

which is the ccndi*ion for sultiples of th. to occur et (2. - s)
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-_0-2
P S A PO R (2.82°
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- .42
. a 1e X .. xe X .8
t A . r 2. ! 1&. ). &
e/
(2.31)
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LV L O as

)

s.rg *he express! rs f:r 'F -2°f ard 'l- 2¢  from Lyaatice 2.




v

PN TSNS T

I tec mes:

= > DT
L
I - o= (U S S
v - .3
‘ Y
o‘w 1 - P E - = t 3 .:
Lticg ) . Bt e g, £330t n 1LY cun o te ! er
tO be eJ.eL 'O
: r . =0 : :,
I - e e T - = ' e 3
o .
2 2
1) ] Bt Cc:ia k.-t 4%, b &
wtere 1 ° ts noreregligitie £or O -t o

it samary, ‘e guadret.re correlati-r furctlor samglirg err v
I was shwr * be ecsser’ial.y ser f 7 o g.olre’.re jair samg.irg
rete ?. qrea’er "ra” 're Starr. v rete, ! I+ m eever, "te red..ar

c.rrelati r. foret. o samp.ird €rr r ens 8! o7 te Jeperder’ .| -

e val.es ¢ o - 0rd f.. F-r sapgp.i*¢ e’ @ f. dres’er ‘rar
v Starr. r rete f . v, 'le reg..Aar Crre.a’. r saRg..rg €rr r .
essertin.ly ger (¢ = \:y - M an irteger and n re.reg.lgitle
f-r ary °ter cetira'! rs ¢ ard .

-




&

Jcrrelatior. .ariance for larrowband lasga Prcess leputs.

e secoe.d tarmoeic (i the regilar correlatice pro@uct specira alsc
ras ar importarnt effect e ke correlatice fumctice veariaace for the
case otore 2o furctice 1z % is assumed *- o & Bamder >f o vwide-

se~s¢ 3°0'. fAry rard e pr_sess weick car be represented by

5 nte a0 cu-'olzt‘ﬂt...}.

stare ‘s *re certer frequency. 5 ard 5!‘!' are lov pass
rerd 8 Fuocti-rs om0 8.t AN crogs-correlatice functions are

&r. et

Asgs2e *tat te fuxlir y ¢t can alsc be represented by the

rarr-e tand apgroalmetlc-oe

J - L.t ecc8 - Lz voslr ot (2.34)

vtere L and Lt can elther e Geterministic or rendom low

jess foctices. For “re purpose of 'Nis aralysis, Pe cely peoperties

g & ang t_ 224° ..l te aasmed Krowm are e correlation

-
-

| g SN .Y ]
B 0L, t.r B, I, % ,arg £ ° b v.r  and 111 e
? N
£ :
. J

Ass 2@ n.s "'a’ te ard y * are uc rrelated; L.0., ‘Pat




‘ader these assaptices, he in-ptase regilar correlatice

functica from EQuatie I.1) is givee by:

t x

, ‘ 1l .
o - H 4
\l" R LD AL
-1
|
l - .
' B 51 I.. c.8 - _ I.‘ - "‘.’ l.‘ sir -..
®-l
. 11 L €28 - -.. - l,: ... sirn [
o aser value f ¢ s sero by Eguatiorn 2.%° e variarce,
L S
p e of v ts
g »
! 1 L 4 Y L 4 \ L J { L 4 \
VR i! n BT ) y AT nel ) el ). 2. %
el | 2B}

I 2t) e yt are assmnd - e ladependent 8o Lhat the
pr-tetility Gersity furction p & lt. ] lt. . a"lt. o« J -t.‘ -
pn l?. ) -!." 3] it. ,‘-?.‘ . % foure-f-l6 expeciation f

Lewation 2.% cor te reguced

) l.. y l.. " l.. b l.. - n l.. n l.‘ ) I.. 7.,
-.: f Lg.ati.r 2.% ‘rer red.ces °
N L
-« . : . 1 - - - ® + &
(- , ? RS T A D A L t.S
| T L




e A —y

wbere

f ) ‘m® ) = t \
alf‘ nl.‘ !1 kf. X

1,-.‘) cos -okt. cos uolf'

- | 'IT‘ X

1
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Substituting Equations (2.38) and (2.39) into Equation [2.%0) gives

o2 2 M
2 _ ny TR m .
% T W *tuw - (O {-“’m N (uT_) °EE (°Tg)
Fol 11 s 11

+ 09 (mT_ ) o (mT_)] + cos 2w mT |9, (mT_ )
NINZ s E1E2 [ o s thl s

-9 (mT_) »
N1N2 s ElE

2(m'l‘s)

+ 8in 2w mT [9® (mT_ ) (mT_)
0 8 NlNl s ElE2 s

+® (mT_) ® (mT_)]
N1N2 s ElEI s

The in-phase quadrature correlation function for these same

conditions is, from Equation (2.4):

< B ‘n(2aT ) y(zaT) - A(2aT.) F(2nT,)).
m-1

o (mT )
ElEl s

(2 41)
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Frem the above equations, 0m[(k-m)Ts] and ®yyt(k-m)TsJ can be

written as

<>
L 4
¢nn[(k-m)Ts] 2 ®N1N1L(k-m)Ts cos mo(k-m)Ts
+ O & L(k-m)Ts] sin wo(k-m)Ts, (2.38)
12
and
@ny(k-m)Ts] = oElEl[(k-m)Ts] cos wo(k-m)’l‘s
+ op E| [(k-m)Ts] sin wo(k-m)Ts. (2.39)
171
GRZ from Equation (Z.37) now becomes:
M M
2 1 \ \ .
S — - T ® h -
R v i © n((k-m)T ] yy.(k m)T,]
k-1 ml
M
1 \
% 2 (0) o (0)
’ ml
5Ty
+ 2 B onn_(k-m)T 1 9 (kem)T )
k-1 m-l
k>m
22 M
N E S my .
o W T ) (L M) (st) (mT_)
Y mal

(2.L0)




The mean value of ¢ is zero and the variance is !

Q
— M/z  M/2
oQ2 - @QZ 2 lz >J >; (n(2kT,) y(2kT ) +‘ﬁ(2kTs) §(2kTS)]
kel m=1

(n(zmT,) y(zmT ) + Q(Zst) 9(2mTS)]

M/z2 M2
= iz jé > [n(2KT,) y(2kT,) n(2mT_) y(2mT)

k=1 m=1

+ n(2kT,) y(2kT_ ) A(emT) HzmT )

+‘ﬁ(szs) 9(2kTs) n(am?_) y(zmT_)

+ fax ) ?(szs) Q(Zst) 9(2mTS)]. (2.42)

The first expectation in Equation (2.42) is given by the regular

correlation funection result of Equations (2.38) - (2.40) as

n(2kTS) y(ZkTs) n(2mTS) y(2mTS) N N [z(k-m)TS] cos 2u>o(k.m)TS

kI '

: + ¢N1N2[2(k-m)Ts] sin Zab(k-m)Ts

°E.E

] l[2(k-m)TS cos 2ab(k-m)Ts 1

)
;

[2(k-m)TS] sin BQB(k-m)Ts

+ 0
E,E,

~ g gt —

(2.43)
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expectation in Equation (2.42) is:

n( kT_) y(2kT ) ﬁ\(Zst) §‘(2mTS)

RN TR e T s e

AT e e TS

‘ The fourth expectation ﬁ(ZkTs) 9(2kTs) r’1\(2st) 9(2mTS) can also be

shown to be given by Equation (2.43). Similarly, the second

[n(2kT,) f(znT )] -

[y(2x7,) $(2mT,))

-chlNl[Z(k-m)Ts] sin 2a>o(k-m)Ts

¢N1N2[2 (k-m)Ts] cos Z(no(k-xn)TS

& 2(k- =
¢E1El[ (k-m)T] sin 2w (k-m)T

"ElEz[z(k-m)Ts] coOSs 2wo(k-m)TS 9

(2.44)




and the third expectation becomes:

37

S(zkrsi'ﬁ(zkws) n(zaT_) y(zal )

(M(2KT ) n(2aT )] - |

(y(2kT,) y(2m1 )]

r . . .
¢N1N1L2(k-m)Ts] sin 2uo(k-m)Ts

QN N [2(k-m)T

cos 2(1)()(1(-m)Ts
12

sl

°E

lEl[Z(k-m)Ts] sin Zwo(k~m)Ts

i 1 -
oElEZ[Z(k m)'I‘s, cos Zwo(k m)Ts

(2.45)
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2 v [2(k-m)T_] o £

"2(k-m)T,]
11 171

n_y 2 r ,
0 M/ *n. . (2nTy) °E1E2(2mrs)

(anT_)] (1 - 2my, . (2.46)

i M

(2mT ) o
2 S B

N E,
A comparison of URZ from Equation (2.41) for the regular
correlation function and on from Equation (2.46) for the quadrature

correlation function shows the presence of second harmonic terms in
oRz which do not appear in on. Thus, while on depends only
upon the relation between the sampling period TS and the signal

also depends upon the center frequency Wy of

bandwidth W, oRz

the signal spectrum. This is illustrated in the example derived in

the Appendix for the case where n(t) is bandlimited white noise

with a flat power spectrum for (fo = %) € P < (fo + g); For this

example, UR2 from Equation (2.41) and on from Equation (2.46)
f

are plotted in Figures 2.6 and 2.7, respectively, for Wg = 9 and

£ eI Blisid L o - 5 A Stk 2 B A A S Ak A Bt Sl A 1
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a 2TW product of 52, Figure 2.€ shows *hat the reguler correlation
variance can be as much as C o 2 dB higner thrarn the quadrature
correlation variance of Figure 2 7 depending upcn the relavicnship of
the sampling rate o fa anrd W. For this example, nct only is the
effect of the secornd harmonic missing in Figure 2 7, but tne Qquadrature

correlation func:ior. variance is seen %o be con:tan® at about

SR ns (2.L7)

for all fl > W,

To summarize, for the quadrature correlatior. function, the
sampling error E was fournd to be zero and the correlation variance
UQZ was found to be a constant independent of ?s for f; > Af2n.
However, for the regular correlation func*ion, both the sampling

error arnd the correlaticn variance were found to have undesirable

second harmonic terms at some values of fs'

2.3 Comparison of Quadrature Correlation Functions for Clipped E

and Unclipped Signals

In this section, we wish o consider ~he properties of the

quadrature correlation function for a special class of functions-

,.‘

clipped narrowband signals. The relatiorship between a real-valued
function x(t) before clipping and i-s vaiue u(t) after clipping E
is given by

1 for x(t) >0

-1 for x(t) < O.

R e

-

e e e S . B i 4. e e A s
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Hard li=iving thus destroys all amplitude” informaticn in x/t)
and retains “he ‘phase” information in the sense that only the zero
axis cr-ssings <f x(t  are preserved in wu(t).

The analytic model for the quadrature correlation function for
clipped signals shown in Figure 2.t differs from the quadrature
correlaticn function model for unclipped signals of Figure 2.2 only
by the fact that ult) and v(t) are hard limited versions of the
sigrals x't) and y(t). The quadrature correlation function,
Equaticns /2 «) - ‘2 5), can thus be used to describe the clipped
correlation functions of Figure 2.§ by replacing x/t) by sgn x(t)
and yt) by sgn yit).

We wish to compare the clipped and unclipped quadrature

correlation functions of x(t) and y(t) for two cases:

SRl D css(t) and y(t) = s(t - 1) are both equal to the
same narrowband gaussian signal s(t) but with different relative
amplitude o> and 2] y(t) = s(t) and x(t) = cnn(t), a member

of a wide-sense stationary gaussian random process. Let

R : . .
At )= Nl(t) cos « t - Lz\t) sin wOt
and
s (b)) = El(t) cos aot = Ez(t) sin got,
where
2 i
N, (a)y - N2 (% J= At
2 B 2 _
El N = E2 () =)
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and

Ei(t) Hj(t = 1) = 0 €erds § = lp 2.

The values g and °n account for differences in relative amplitude
between x(t) and y(t).

Let the quadrature sampling rate be at the Shannon rate of
A 1
rs - 27
s

The Hilbert transform of s(t) is given by

= W sample pairs, fx(ZnTs), Q(ZnTs)], per second.

s(t) - E, (t) sin st o+ E

1 (v) cos “ot

2

and the pre-envelope of s(t) by

Ju t

A o]

s(t) » gs(t) = [E,(t)* JEz(t)]:COS u b+ sin uot] = f(t) e

where f(t) 1is the low pass modulation function whose spectrum is
equal to the positive spectrum of s(t) translated down to zero

frequency and

(1).
171 EIEZ

Consider first the quadrature correlation function for the

unclipped case defined by

it €W




Ls !
]
M/2
1 \ . A A ;
(5 °Q(MTS) =5 - -x(emT)) y(2oT ) + x(2aT ) y(2aT )],
’ m=1
M/2
0 - g ) x(zmT) §(zmT) - R(2mT,) y(zaT,)],
=1
;
[
and
ﬁ ZQ(MTS) = QQ(MTS) vty :Q(MTS)
Considering Case 1, if we let x(t) = css(t) and y(t) = s(t - 1), 1

zQ(x) will be the auto-correlation function of s(t). Computing

ZQ(T) at increments of 1 equal to the spacing between samples,

2Ts, gives
M/2
z.(2nT ) = L x(2mT ) - JQ(ZmT )] y(2mT ) + J?(me )]
Q s M ‘ s s " s ‘s’
m-1 ]
M/2
. 8 ! (
W ) Ls(Zst) = JS(Zst)]LS(Zst - 2nTs) 4
m=1

M/2
-1 L\ 4.
= zo0.e Wz f (2st) f(ZmTS - 2nTs)

m=1

_ s s
s e zpp(2nT), (2.48)
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)

L6

where, by Equations (2.27) and (2.28), zrr(ZnTs) is equal to .

T ]
£f*(t . £(t - 1)dt for fs‘z W and 1 = 2nTs. Taking the :

3

o]

real and imaginary parts of Equation (2.48):

° = g R = ]
Q(2nTs) “s~°£1F.(2“Ts) cos ZuOnTs bElEz(ZnTs) sin ZuOnTs_,
and (2.49)
A ( T e L] 5 »
-C\ZnTS) S CEE (chs) sin ZuonTs t i g (2nTs) cos ZuonTs].
171 172
(2.50)
The correlation function envelope is given by:
£, 2, - A2 . |
Senty) - ety ¢ f Fenn) - e
) SN
. L) (2.51)
s '\[ E\E, (20T ) + oslgz(zn'rs).

The maximum value of EQ(ZnTs) occurs at n = 0 and is given by:
(€ Jnax ~ El0) - o (2.52)

For the clipped case, the auto-correlation function of s(t)
can be found by using the relationship [37] between the cross-
correlation function of two Gaussian signals before and after clipping:

MAY

o (1) = £ sin7ho (7 (2.53)

oab

where

S

SDoC—r —— e e—ambme,




L7

.ab(') cross-correlation function between a(t) and b(L) afrer
clipping,
= p.b(v) - normalized cross-correlation coefficient between a(t)

and b(t) before clipping.

Using Equation (2.9%), the real and imaginary parts of the clipped
signal quadrature correlstion function when x(tv) - c.s(l) and

v(t) = s(t - t) are:

AAAVA 2 _1 (Zn‘l' )
OQ(ZnT.) = g
. 2 lln'l 1 (2nT ) cos 2w nT_ = ¢ (2nT.) sin 2u nT )
n BB 8 o 8 E.E 8 o 8
171 172
(2.94)
and 1]
AAAAAAMAA 2 (2nT
¢ n
A - )
) (ZnT ) = -2- sin 1 [ﬁ_ﬂ]
Q 8 n o
.2 -1
- sin E E Qn’l‘ ) sin ZwonTs + o0 g (2nTs) cos ZwonTB].

171 172

(2.55)

Because clipping is a non-linear operation, the correlation
envelope cannot be computed as the square root of the sum of the
squares of :g and oQ, However, the peak of the correlation

(-« mope can be found from Equation (2.54) for n = O, since

A
¢Q(O) = 0; i.e.,

i'
f
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N oq(o) * ;lln'l(l) s 1 (2.%6)

Equations (2.96) and (2.%2) {llustrate ¢ basic normalization
property of clipping; i.e., the correlation function for clipped
signals has a range of -1 to +1, while for the unclipped signal, the
range s zol to to, 8 function of the signal amplitude.

For Case (2), 1f y(t) = s(t) and x(t) =~ onn(t.). a member
of a stationary gaussian random process, the average value of the
Quadrature correlation function for the unclipped case is zero and

its variance as given by Equation (2.46) is:

2 M{g

2 o n .2_ '
W' W ‘°Nlul‘2ﬂs’ '5151(2”;)
masl

toyn (B8T,) 0 p (28T )L - 5% (2.57)

If n(t) is assumed to huve a rectangular spectrum of width W He,
A
Figure 2.7 shows that, for any f' 2,

2
0

° T o (2.58)

°Q

where T is the signal duration in seconds.

The correlation function variance for the clipped signal case
AMAA

<« can be found by computing °Q2 from Equation (2.42) as a function of
«p MM

u(t) and v(t) and then using Equation (2.53) to express °Q2 in

terms of s(t) and n(t).
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M2 M[2 R
0’ i; ) Y Miatkemr ) o (2(kem) )
r k=l mal
MA MA
Vo al2(k-m)T ] ovclz(k-m)'r'])
M/2
2 }12 + % ~ (1 - ?)i::‘(%’l'a) QVMV(Zm'l")
m-1
MA . MA i
+ aua(zmlc) °v0(2””s)'
M/2 ¢+ (2mT )
. é4 % ”EZ' > (. ?) ﬁsln'l —"‘::—\2——’-][31{1 O”(Zm'l‘s)]
msl n

o balenT) -1
+ 'sin -ﬂn-r— ]isin OSQ(Zst)!}- (2.59)
nn '

A plot of the variance given by Equation (2 59) for a random process
n(t) with a rectangular spectrum of bandwidth W Hz and center

f
frequency to Hz {is shown in Figure 2.9 for Wg - 9 and

M = 2TW = 50. The equations for this example are derived in the

Appendix. Figure 2.9 shows that, for the Shannon sampling rate of

A
t’ = W, the variance is given by
AW
. 1
% ° TW° (2.60)

but if the sampling rate is increased sufficiently, a variance of

»
" approxirately

(2.61)

o
&
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can be achieved. 1The small ripples in Figure 2,9 occur when integer
multiples of the sampling rate are equal to the second harmonic of
the signal center frequency. Because of the non-linearity of the
limiters, these ripples were not completely eliminated as were those
of Figure 2.7 for the unclipped signal case.

For comparison with Figure 2.9, the variance for the regular
clipped correlation function is shown in Figure 2.10 for the same
example. The curve of Figure 2,10 shows the same asymptote for
large rs as the quadrature correlation curve of Figure 2.9, but it
exhibits ripples of about 3 dB instead of approximately 0.5 dB
for the latter case.

A comparison of Figure 2.7 and 2.9 shows that clipping
permits a reduced correlation variance for random signals if sampling
is increased sufficiently beyond the Shannon rate. In summary, the
two principal effects of clipping are seent be correlation function

normalization and reduced correlation variance for high sampling

rates.,




o
n

9quy Buridumreg ° S\ IOUBTIBA
uoT3ouUng UOT3BT3II0) Jenday Teudrs paddrTd 0172 aan3dtg

M2/7% "31VH ONINDNYS G3Z1INVYWHON

L S S 14 € 4 I o
T T T T T

£
do
-0

o]

=151

‘39NVINVA NOILYI3HH0D Q3ZITVWHON




CHAPTER III

QUADRATURE CORRELATION FUNCTION PROPERTIES FOR

SINUSOIDAL SIGNALS AND UNIFORM SAMPLING

3.1 Quadrature Correlation Function for Sinusoidal Signals

In this chapter, the uniform sampling quadrature correlation
results of Chapter II for narrowband functions with large TW products
will be extended to the case of sinusoidal signals. After examining
the correlation properties of sinusoidal signals, the effects of
uniform sampling and hard limiting will be derived separately and,
finelly, the combined effects of both sampling and hard limiting will
be examined. The problem of spurious odd harmonic correlation
resulting from clipping and sampling will be investigat=2d in detail
and a solution to the problem by the use of non-uniform sampling will
be introduced.

Consider the quadrature correlation function model with finite
integration time T shown in Figure 3.1 for two infinitely long
sinusoidal signals with different frequencies. Let the input and

reference signals be given by

Cos W

»
—~
ct+
~—
i

lt, < t<w,

and

«
—~
ot
g
It

cos wot, «0 < t < «,
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x(t)scos un! + ol™!

v
" LA Ed‘ z!(r)
2T Ly

yit)e cos wyt

Figure 3.1 Quadrature Correlation Function Model for Sinusoidal Signals
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where W = Zﬂfl and wy = ano are the sinusoidal frequencies,

As discussed in Chapter II, the real and imaginary parts of the
complex correlation function zl(T) of Figure 3.1 represent the

"in-phase" and "quadrature phase" correlation components and zl(r)

represents the envelope of the correlation function. From Figure 3.1,

zl(r) is:

T/2  Jot -jw (t=-1)
e L e 2 at

1 l "o
The correlation envelope pesk at 1 = 0,
sin n T(f.-f )
.1 _ l "o
nO) = | Ty (3.2)

is plotted in Figure 3.2 as a function of the frequency difference
(fl-fo). This plot shows that, except for frequencies fl within

about % of the fixed frequency fo, the correlation-envelope

peaks, as a function of input frequency fl’ never exceed the

sidelobe peaks of the 533—5 function. Only the first two pesaks

are greater than 10 percent of the main lobe value at fl = fo.

For large T, therefore, this correlation function has a very
selective frequency characteristic, since it has appreciable amplitude
only for frequencies fl which are within about % of the reference

frequency fo'
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T T (fi-fo)

Figure 3.2 Frequency Selectivity of Quadrature Correlation Function
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The correlation function given by Equation (3.1) assumes an

input signal, cos w,t, of infinite duration. For a sinusoid signal

1
of finite duration T, an additional linear weighting factor is

present giving

Ju T sin n T(fl-fo) Jll
e (= ) .
n wal-fo) T

of

zl(T) =

Note thu* the correlation peak at 1 - O 1is the same as that given
by Equatiocs (3.2) for the infinite duration case, justifying the use
cf infinite duration s!nusoids for finding the frequency response

for small 1t sucu at 1<<T,

3.2 Uni forn Sampling Effects

Next, consider tne ~uadrature correlation of sinusoidal signals
with uniform sampling. Figure 5.3 shows a quadrature c rreiati n
function model with uniform sampi. ¢ intervals ¢ ?15 Bec 0l Aarkg
with loput aud referencs sinusoidal a.orals f « ¢ t, recpetivel,

The complex quadrature correlation funct: ¢ = ) € ¢ infinite

duration input sirusoide is:
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o

slt) o cot gyt *
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Figure 3.3 Quadrature Correlation Punction Model for
Sempled Sinuscidal Sigrals
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Jw 1 M/2
Ll f JemTy (g =ay)
W
m=1
Jo' stn mMr (£-) T, (-’2‘-l + 1) 2n(f) -t )
- N aln = 21 (-1 0'7 ¢ (3.3)

vhere = 1{s the number of sample pairs taken during the finite

averaging time of T seconds. The correlation function for 1 : O,

i (L, -f )
ain « 1% ’ (s.h)

1
g . (0)] -
e H % M sin x2T (f,-f )

shown in Figure 3.4 approximates the envelope characteristic

sin x
X
of Figure 3.2 but with a repetition interval of ?. - -2-%: , Aas
expected from sampling theory [36). The sidelobe peaks midway
between the mainlobes are equal to about 1/M, wvhere M {is the
total number of samples This correlation function also has a very
selective frequenty charecteristic as long as the input frequency

£, @oes not differ from the reference frequency fo by greater

1
than '. Nerts.
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Figure 3.4 Frequency Selectivity of Quadrature Correlation
Function with Uniform Sampling
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3.3 Generation of Odd Harmonics by Clipping

Next, consider the effect of hard-limiting on the correlation
of two sinusoidal functions as shown in Figure 3.5. The clipped
sinusoidal signals x(t) and y(t) are square waves of unit
amplitude which can be represented by a Fourier series of odd

harmonics of the fundamental input frequencies fo and fl,

00

v-—-‘ n
>_‘ 'éz—n}-f cos (2n + 1) mlt
n=

k
sgn(cos w_t) - Z 2k+1 cos (2k+l) wt.
k=0

&=

x(t) = sgn(cos wlt)

al

and

8

i

y(t)

If the boxes labeled "Hf" of Figure 3.5 are assumed to shift the

input square wave by 90 degrees of the fundamental frequencies

w, and @ , then the pre-envelopes px(t) and py*(t-'r) become:

% (-1)%(2n+1) w. t

p(t) = x(0)+ sy - b ) L STEAN
n=0

and

py*(t 1) = y(t-1) - jy(t-1)

k
I _1hk -j(=1)"(2k+1) w (t-1)
T ox Ei (Zkéij g ° ) (5:6)
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Figure 3.5 Quadrature Correlation Function Model for Clipped
Sinusoidal Signals
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and the complex correlation function is:
o 1 T/2
2.(1) = == p.(t) p *(t-1) dt
3 et J.'r/z x "/ Py
s JD (2xe) e
_ 8 \ y ( 1)n+ke
T2 - LT TZn+1){2k+1)
n=0 k=0
.[1 T Pl m]
T J..r/2 . (5.7)
vhere
nkn = [(-1)%2ne1) “1 -(-l)l (2kel) uo] represents differences
between the odd harmonics of “1 and - for given values of n

and k. Table 5.1, wvhich shows same typical values that n’hn can
assume, contains all the values of Ql.n vith amplitude weighting
e l . » greater than O.l.

Note from the definition of n\n that the od4d4 harmonic

factors,

frequencies alternate sign; {.e., “1 is positive, 3»&1 is negative,

}al is positive, etc. This 1s the result of the fact that the n' .
boxes in Figure 3.% time shift x(t) and y(t) by & time eguivalen'

to 30 degrees of their fundamental fregquencies “ and “ - Moeever,

this same time shift 13 equivalent to 27 degrees (or -J. Gegrees )

for the third harmonic component of the square wave, o %) gogrees

or *30 degrees) for the fifvh Parecnic component, etc. Thus,

poeitive Rildert transforms are cbtatined (or the fundamental, NP

hareonic, ninth harecasc, etc , vhilie nogative Mlidert trensfores




T TABLE 3.1

v

ODD HARMONIC DIFFERENCE FREQUENCIES WITH
WEIGHTING PACTORS OVER 10 PERCENT

)

Amplitude
Input het . velghting
n | 3 Harmonic Harmonic “n
1 n 1
(@, ) ()
1 [¢] ne [}
0 FUND, FUND. “1 "% 1 00C
© FUND . ™I “ * 5u° 1/% « 0.3%38
0 ND. rFirm - b 1/ . 0.200
0 rRo. SEVENTH “ P 1/7 Lk
XD, L §8 24,1 “ wa 1/9 - ¢.111
1 ™IRO rxp. '3"'1 . A 1/8 - 0.848
? rirm ru, 3-.1 Ny 1/ 0.2
g SEVENTH ro -"v.1 - - 1/7 0. 148
4 NINTH rx. "1 cw Lo L1
l ™MIRD ™I ..‘~1 ¢ Ao o Al
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are obtained for the thi~d harmonic, seventh harmonic, etc. This
phenomemon appears as sltermating positive and negative odd harmonic
frequencies in the spectrums shown in Figure 3.6 of the pre-envelopes
px(t) and p"(t) obtained by taking the Fourier transforms of

Equations (3.9) and (3.6) and given by:

n

4 -1 g n
Pl -0 - —y tle =(-1)7 (2n01) o) ]
n:=0
and
Poew) - TFpen o2 RET I DY (2mel) . )
, [~ p, 5 A .- - oo.
X0

Perforaing the integration indiceted ir Equation (5.7) gives




K g l ‘ J
-Ten Sy - S ™~
] 1""‘
L L

Ngure 2.6 Spectres >f the Pre.lnvelopes p.(\) and py’(t)
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k Uy

o w j(-1)°(2k+l) w T sinQ 3

&) y ()™ & = ; T
xa i i (2n+1) (2k+1) QY3

input reference

T harmonic harmonic
8 sin(m1 = uo) 3 jwo-r
> T e where FUND. FUND.
n (ul -w)3
1 sin(.’m1 +w )% Jw T
-z QTF- e THIRD FUND.
(301 + uo) E
1 Mn(w1 + Suo) % -J:Swot
-3 T e FUND. THIRD
(w, + 3w ) s
1 o’ 2
sin(%w, - v ) 2 Juw 1
& 1 1 o’ 2 o
e FIFTH FUND.
5 e - w3
1 o' 2
T
1 sln(ul - juo) 3 35@01
’ 5 s e FUND FIFTH
() - S,)) 3

(3.8)

where the individual contributions of sll combinations of input and

reference harmonics can be seer. For the special case of Wy - v

and ¢

when &

0

0, all the terms in Equation (5.8) are negligidble except

n, eiving:

i o ok, B8 T2




~os

68

o0
_ 8 y 1 B}
zz(O) =% ) Tz - 1 for w = .

n =0 (2n+1)2
Likewise, for W, = -Swl and 1 = 0, all terms are negligible
except when n = (3k+l), giving:
oo
zz(o) = 8—2 y ; —Lz = % for w = -Swl.
n o (2n+1)

If we consider just the peaks of 22(0) tor frequencies at which
an = 0, we can express the co.tribution due to the prircipal

pairs of input and reference odd harmonics ty:

o0

n
zz(o) Desk < 5 é;—l%’ & [L-i - (-1)" (2n+1) »O]
n=0

k
v '('%k—}%'r Blu = (<)% (2k41) w, ] (3.9)
k-1

as shown in Figure 3.7. Equation (3.9) neglec.s differences between
higher order odd harmonics of wy and wl, tre most significant of
which (for n - 3, k = 5) has an amplitude of .niy -G])'-G’ = % .
As shown in Equation (3.9), the principal terms are of two types:
(1) differences between the input fundamental w, and the odd
harmonics of w, (the terms indexed by n), and '2) differences

between the reference fundamental Yy and odd hamonics of w, (the

1

B S —
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FMgure 3.7 TFrequency Selectivity of Correlation Puncticn for

Clipped Sinusoidal Signals

||




™

terms indesed Dy ). Ir all cases, ibe correlation amplitude cf the
>34 harmccic terms 1s equsl 1o the inverse of the order of the Marecelc,
{.e., to 1/ for third arecaics, 1/ for fift: harecaics, et¢.

The next section will consider the effect of unifore sampling
ot the model shown in Figure 5.9, [t v.l]l be showm hat for the
sampled case, the 0dd harmcnic terms showm in Figure 3.7 at

- (a1 2m01l) w will be repeated ot multiples of the sampling

-
[*]

~1
A
frequency th'. and the sud-harmonic terus ot - (-l)a
Qe
vill be repested at multiples of TE%I‘

L Effect of wnifore of Cl

To examine the effect of unifors sampling of clipped sinmuscids,
corisider the quadreture correlation function model shown in Pigure .8
T™he expressions for pl(_t\ and p,'{l.v\ are given by Lguatioms (3.9)

and (1.6). The sampler utput sigrals are

’ n Jiel T (2m0)) w, (2mT )
p_(2m1 ) s o ¢ boe (5.10)
x s v _ ne
n-C

and

a , \.(

A . (. k e e)l ) (2Ke}) .g(ut..v)
. ) o w S

p, (ZIT.-V ” A TH’ ) > (8.1%)

R-C
where :T. l/?‘ is the guadrature pairs sampling interval. he

complexn correlation function 18
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Ngure 2.5 Quatreture Correlation Punction Nodel for Clipped
Simesol@al Sigmals with Umifcre Sampling




T2
M/2
1
g, (1) = § >_ p, (2T, ) py'(Zst - 1)
m=1
k
® = 3(-1)7(2k+1) w T
. 16 >\ > (-l)n‘.'k e
R I Ten+T) (k+1)
n=0 k-0
1 & szTann
. n \ e » (3.12)
m-1
where
2 («1)™(2001) w, «(~1)%(2k+1) w_ ] &8 bef
e - L n w, =(- w,] as ore.
[ ]
Putting the bracketed series of Equations (3.12) in closed
form gives
M
2 - " h JTI (E * 1) nk'\
& (11 (.1)n k e
N ? ne +
noO k-0
‘ sin % Mroa 30 ¥ (2rer) o
{1 ¢ (5.13)
’ M sin T. Qu
vhere NT' 3
o
®
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Writing Equation (3.13) in terms of individual odd harmonics

contributions gives:

T g ML

.m (M .
c G - 8 sin(wl - wo) T2 _ e.]Ts('2'+ l)(wl o Uo) eJ“’OT
L -2 M/2 sin(wl - wo) Ts
1 sin(3w, +w ) T/2 _ e"st(% +1)(3w, + w)) eroT
°3 M2 sin(I-Swl + onTs
1 sin(wl + Swo) T/2 _ est(; + 1)(u1 + Suo) e-JSuo1
3 M/2 sinTwl + 3w ) T,
M
{ L1 sin(5m1 = uo) T/2 e‘st(E + 1)(5(91 - wo) eJ“’o‘
_ 5 N2 sinﬁwl -w ) T
; o’ s
; L osinlu) - 5w ) /2 JT (¢ (e - Sw)) S
'S W2 sinfu) - S0_) T: ¢ ¢

. ' ] (3.14)

This equation shows that z,‘(t) contains repetitive terms due to
sampling similar to those shown in Figure 3.4 about each odd harmonic
difference frequency satisfying the relation an -0,

Neglecting terms with amplitudes of the order of 1/1% and
smaller, an equation analogous to Equation (3 9) can be written

approximating principal peaks of 1z, (0) as




\ v 1)k k a
~ s r . )
3,00 T ) () Bimy f (e - (DN o - wf
B ex k-0
= n
-1 n A
+ TN £ w - (1) (2n+)) “ . I‘.]

(319)

If the reference frequency o, Zlfo in Equation (3.19) s held
fixed vhile the input frequency “ C z-tl is varied, the complex
pattern of odd harmonic correlation terms typified by those showm in
Flgure 5.9 {or the fundamental, third and fifth harwonics will result.
This figure {llustrates that, because of unifore saspling, sany odd
harmonic correlation peaks are produced for input frequenties '1
vhich differ from f_) by only a frection of the saspling rete '..
This could be a highly undesiredle situation {f a correlation fumction
vith good frequenty selectivitly {s necessary.

The exact location of the tnput frequencies f1 that give
rise to spurious od44 hamuiic correlation pealis as & functiom of
f‘) and ?. is shown in Figure .10 This figure shows that in any
of *he fixed 'l frequency intervals !;'. (%« 1) '. of length
’.. vhere K 1s an arvitrery integer, there are o0 fundamental,
b third harmonic, € Fifr rareoalc, etec ., freguencies giving spurious

co"relations For fised values of ¢ and ?.. the | cation of each

of tnese response freguercies can te lcateod fra Mgire .10 orge e
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position -f the fundamertal resporse at '. + lt.‘f‘" for scme integer

N (s estadlished and 1ts distance 1 froa he left-Pand edge -f 0o
e interval l?. is determined. 0e significance of ne altermating

positive and negative 44 harwcnic frequencies showr in Fligure & 6

is apparent in Fig re $.!C in that, (f the fundamental respoase

fregquency were acved o the right bty an asount fx, the thind,

seventh, eleventh, etc., harecaic frequencies would sove U the lefy,

while the FIftR, nintk, e'c., harenic frequencies vuld move o the

rigat by the amunt imticated in Ngure ! 10

3.9 Correlaticn Punction farience for Marrowtand hang e Process

w‘ ) .actlone

e correlation funttion variance. :.z. Geflined as e

variance of 'te real part f 3, ) of Figere 1.0 oten \he ingat
sl nlt is o clipped rarrowvtand rend. @ prcess ard jy ' 1s

e clipped slnusci@al furction ts given by Lguetion '2.%¢) e

1‘ o4 2 a-n ?. 0": noo“T.\ e

‘ P r 2@ case ( n ¢ with & rectarguler :pecira { tanteid'r &

| cortered ar usd l( 0
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bandvidth, the variance of Figure 3.1l approaches the f st sampling
rate asymptotic value of 1/ATW more slowly than the coiresponding

large TW case of Pigure 2.9.

-6 Use of Nonuniform Sampling to Eliminate Odd Harmon:c

Responses

In the next two chapters, we vill consider the use o

noauniform tiss sampling to reduce the effect of spurious o3 harmoni~
correlations caused by the clipping and sampling of sinusoia . The
general sampling technique cuns.dered is that of “Block Sampli.";
{.e., the use of short sequences (or blocks) of nonuniform tim:
samples which are repeated at periodic intervals. The nonmuniform
sampling 4estroys the synchronisa between the sampling periodic'ty
and the sigmal pe-.odicity which cause the odd harmonic responses for
the uniform sampling case. Same gensral theoretical properties .f
block sampling vill be developed {n Chapter IV, and the use of b.ock
samgling to reduce spurious odd harmonic effects in quadrature
correlation functions of clipped sinusoidal aignals will be discuried

in Crapter V




CHAPTER 1V

SPECTRAL ANALYSIS JF NONUNIFORM BLOCK SAMPLING

L1 Introductl i

The use of repetitive nonuniform sampling (block sampling’
has been considered for various applications in the literature.
Tou (36] uses Z-transforms to analyze sampled-data control systems
with "cyclic variable-rate' sampling. Yen [lW1l] and Kohlenberg 2L
derive sampling theorems for the reconstruction of signals which
have been sampled by various nonuniform sampling schemes, one of
which is "recurrent nonuniform sampling.’” In this chapter, we will
examine some of the basic properties of block sampling, concentrating
on the sampling frequency spectrum properties. The importance of

studying the sampling function spectrum is evident from the fact that

the spectrum of a sampled signal is equal to the convolution of the
spectrum of the unsampled signal with the sampling function spectrum,
In Chapter V, the sampling spectrum results from this chapter will be
applied to the problem of reducing odd harmonic correlaticn peaks for
a correlation function between two sinusoidal signals.

Before deriving the block sampling time and frequency equations,
the analogous uniform sampling equations will be obtained for
comparison. Consider the infinite train of uniformly spaced ideal

sample pulses shown in Figure 4.1 and given by the sampling function
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Flgure L.2 (rifore Samplirg Spectrua
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(e sangling rete '-.

62 mfinition of Dixa Sampllirg

Corsier ‘e poriodic sampllirg furgtl e J<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>